

WBS 1.1 Structural Components RFQ, Linac, & Bunchers

Jim Alessi

July 25-27, 2005

Preinjector Layout

RFQ: 17 - 300 keV/u; 100 MHz

IH Linac: 0.3 - 2.0 MeV/u; 100 MHz

RFQ (vs. CERN Pb RFQ)

Parameters	BNL	CERN	Units	
Туре	4-rod	4-rod		
Q/m	0.16-0.5	0.12		
Input Energy	16.2	2.5	keV/amu	
Output Energy	314.72	250	keV/amu	
Frequency	101.28	101.28	MHz	
Max rep rate	10	10	Hz	
Length	4.37	2.5	meters	
Number of cells	277			
Aperture Radius	0.005	.0045	meters	
Voltage	69	70	kV	
E(surface)	20.8	≤ 23	MV/m	
RF Power	< 350	< 350	kW	
Acceptance	1.7	> 0.8	π mm mrad (nor)	
Input Emittance	0.35		π mm mrad, nor, 90%	
Output Emittance (trans)	0.375		π mm mrad, nor, 90%	
Output Emittance (longit)	33.6		π MeV deg, 90%	
Transmission	91	93	%	
Bravery factor	1.8	≤ 2	Kilpatrick	

IH Linac (vs. CERN Pb IH)

Parameters	BNL	CERN Tank 1	Units	
Q/m	0.16-0.5	0.12		
Input energy	0.314	0.250	MeV/amu	
Output Energy	2.08	1.87	MeV/amu	
Frequency	101.28	101.28	MHz	
Max rep rate	5	10	Hz	
Length	4.0	3.57	Meters	
Input emittance	0.55		πmm mrad, norm, 90%	
Output emittance	0.61		π mm mrad, norm, 90%	
Output energy spread	20.0		keV/amu	
Transmission	100		%	

Two quadrupole triplets inside for focusing.

The maximum field on the axis will be 13.5 MV/m.

Fixed output velocity, independent of the q/m of the desired beam (cavity gradient is adjusted for different q/m's, to maintain a fixed velocity profile).

REX-Isolde RFQ

5 keV/u to 300 keV/u 101.28 MHz Q/m= 1/4.5 (1/6.5 possible)

L=3m

 $R_s = 146 \text{ k}\Omega/\text{m}$

P=30 kW

Q=4050

~GSI HLI-Linac and Heidelberg high-current injector

REX-Isolde IH Linac

0.3 MeV/u to 1.2 MeV/u 101.28 MHz L=1.5 m Q/m=1/4.5 R_s =330 M Ω /m P=65 kW

~GSI HLI-IH and CERN Tank1

RIKEN - Okamura

RIKEN - Okamura

REX-Isolde Bunchers (split-ring)

Q/m=1/4.5 101.28 MHz L=0.2 m, 3 gaps (70 kV integrated) P= 2 kW

~GSI HLI and CERN Pb linac

SCOPE

Procurement of the following devices:

RFQ:

100 MHz, 4 rod design is conventional. Very similar to GSI, CERN, etc. Will buy RFQ from Frankfurt.

LINAC:

IH structure chosen, very similar to CERN Pb linac. (conventional baseline design).

Will probably get IH from GSI / Frankfurt.

Will still investigate alternatives (electrostatic focusing) in FY'06.

Bunchers – 1 in MEBT, 2 in HEBT (Frankfurt)

Discussions and correspondence with Frankfurt (Schempp, Ratzinger) – they are ready to build the RFQ and Linac for the project.

RFQs and Bunchers supplied by Schempp

11.7.05

Projects: RFQs built for other Institutions

GSI: HLI RFQ EZR 25% df,

HSI * MeVVa,Cordis

SCR He+

Spiral Cordis 27MHz U 2+

ESS-prototype Duopl. p

DESY 750keV inj.I Magnetron 18keV Inj. 25 mA
DESY 750keV inj.II Bucket 35keV 50mA

RAL I,II Penning 5%df 35mA ISIS injector

MSI Stockholm EBIS Saclay EBIS

Lyon Cluster m=50
Lyon Cluster m=1000

CERN /Orsay p-bar Lear Decelerator

MPI Heidelberg I,II* EZR, Cordis LMU München/Rex-Isolde* EZR,Isol

HMI-Berlin I,II EZR cw-cyclotron injector

DeBTec volume p,D 20%df

Prema I,II,III* P++, EZR HE-Implanters
Med-HD EZR p-C Med.Therapy acc.

GSI/Heidelberg

IKF EZR

Riken Laser-IS 60mA C4+

*=collaboration

Besides RFQs, there were appr. 20 Buncher, Rebuncher, Post acc Cavities "exported" CERN 4, GSI 6, Desy 3, Rex 1, SA 1, MSI, SacI,Pr. 3,IKF 2 resonators,,

WBS 1.1 Structural Components

- Major procurements (direct costs, '05\$):
 - RFQ: 340 k\$; 30% contingency
 - Linac: 400 k\$; 40% contingency
 - Bunchers: 3 @ 33 k\$; 30% contingency
- Risks
 - Technical risk is low
 - Schedule risk both are on critical path for the project
 - Cost risk \$/Euro

Schedule

EBIS)

RFQ procurement early in FY'06 with NASA \$ ~ 18 month delivery; test ~ Q3/4 of FY'07 (on Test

Linac procurement in FY'07; install in Q4, FY'08. (gives ~ 1 year to investigate alternative linac options)

Estimated Cost

		Direct FY'05K\$			
WBS	Description	Mat'l	Labor	Contingency	Total
1.1	Structural Components	1675	680	\$665 (28%)	3020
	EBIS, LEBT, external inj	770	480	\$320 (26%)	1570
	RFQ, Linac, Bunchers	905	200	\$345 (31%)	1450

Labor hours/equivalents

	RFQ, Linac, Bunchers
Resource Category	estimated hours
Scientist	865
Engineer	920
Designer	120
Technician	860
Management	0
Building Trades	0
Total	2765
Full Time Equivalents	1.6

